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FMradio-package Factor modeling for radiomic data

Description

The FMradio package provides a workflow that uses factor modeling to project the high-dimensional
and collinear radiomic feature-space onto a lower-dimensional orthogonal meta-feature space that
retains most of the information contained in the full data set. These projected meta-features can be
directly used as robust and stable covariates in any downstream prediction or classification model.

Details

Radiomics refers to the mining of large numbers of quantitative features from standard-of-care
clinical images. FMradio aims to provide support for stable prediction and classification modeling
with radiomics data, irrespective of imaging modality (such as MRI, PET, or CT). The workflow
has 3 main steps that ultimately enable stable prediction and classification.

Step 1: Regularized correlation matrix estimation. Radiomic data are often high-dimensional in
the sense that there are more features than observations. Moroever, radiomic data are often highly
collinear, in the sense that collections of features may be highly correlated (in the absolute sense).
This results in the correlation matrix on the radiomic features to be ill-conditioned or even singular.
It is also this combination of characteristics that proves difficult to predictive modeling. As the
factor-analytic procedure is based on the modeling of moment structures such as the correlation
matrix, the first step is to obtain a regularized, well-conditioned estimate of the correlation matrix.
The following functions are then of use:

• radioHeat

• RF

• subSet

• regcor

The radioHeat function can be used to visualize (a possibly regularized) correlation matrix as a
heatmap. It can also be used to visually assess feature-redundancy. The RF function provides func-
tionality for filtering features that are so collinear that they are deemed redundant. The suBSet
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function provides functionality to subset data objects to those features retained after possible filter-
ing. The regcor function subsequently provides a regularized estimate of the correlation matrix
(on the possibly filtered feature set).

Step 2: Factor analytic data compression. The next step would be to project the collinear and
high-dimensional radiomic feature-space onto a lower-dimensional orthogonal meta-feature space.
Factor analysis can be used for this purpose. The following functions are then of use:

• SA

• dimGB

• dimVAR

• SMC

• mlFA

The SA function assesses if performing a factor analysis on the (possibly regularized) correlation
matrix would be appropriate. The dimGB function can be used to determine the number of latent
factors (i.e., to determine the intrinsic dimensionality of the meta-feature space). The dimVAR and
dimSMC functions can be used to provide additional decision support with respect to the output of
the dimGB function. The mlFA function then performs a maximum likelihood factor analysis using
the (possibly regularized) correlation matrix and the choice of intrinsic dimensionality as inputs.

Step 3: Obtaining factor scores. The third step would be to use the factor analytic solution to
obtain factor scores: the score each object/individual would obtain on each of the latent factors.
The following functions are then of use:

• facScore

• facSMC

The facScore function provides several options for computing factors scores. The determinacy of
these scores can be assessed with the facSMC function.

Step 4: Prediction and classification. The factor scores obtained with Step 3 can be directly used
as (low-dimensional and orthogonal) covariates in any prediction, classification or learning proce-
dure. One may use the full flexibility provided by the CRAN repository for this step.

Additional functionality. The package also provides additional functionality. These are contained
in the following (convenience) functions:

• dimLRT

• dimIC

• FAsim

The dimLRT and dimIC functions provide alternative options for assessing the number of latent
factors using likelihood ratio testing and information criteria, respectively. These are only recom-
mended when the sample size is large relative to the number of features. FAsim provides a flexible
function for generating data according to the orthogonal common factor analytic model. All these
functions may be of use in comparative exercises. The package also provides a wrapper function
that automates the 3 main steps of the workflow:

• autoFMradio
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Author(s)

Carel F.W. Peeters [cre, aut]
Caroline Ubelhor [ctb]
Kevin Kunzmann [ctb]

Maintainer: Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

autoFMradio Wrapper for automated workflow

Description

autoFMradio is a wrapper function that automates the three main steps of the FMradio workflow.

Usage

autoFMradio(X, t = .95, fold = 5, GB = 1, type = "thomson",
verbose = TRUE, printInfo = TRUE, seed = NULL)

Arguments

X A data matrix or an ExpressionSet object.

t A scalar numeric indicating the absolute value for thresholding.

fold A numeric integer or integer indicating the number of folds to use in cross-
validation.

GB A numeric integer or integer indicating which Guttman bound to use for de-
termining the number of latent features to retain.
Must be either 1, 2, or 3.

type A character indicating the type of factor score to calculate.
Must be one of: "thomson", "bartlett", "anderson".

verbose A logical indicating if function should run silently.
Runs silently when verbose = FALSE.

printInfo A logical indicating if additional information should be printed on-screen.
Suppresses printing when verbose = FALSE.

seed A numeric integer or integer indicating the seed for the random number gen-
erator.

https://arxiv.org/abs/1903.11696
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Details

The autoFMradio function automates the three main steps of the workflow by providing a wrapper
around all core functions.

Step 1 (regularized correlation matrix estimation) is performed using the X, t, and fold arguments.
The raw correlation matrix based on data X is redundancy-filtered using the threshold provided in t.
Subsequently, a regularized estimate of the correlation matrix (on the possibly filtered feature set)
is computed with the optimal penalty value determined by cross-validation. The number of folds is
set by the fold argument. For more information on Step 1 see RF, subSet, and regcor.

Step 2 (factor analytic data compression) is performed using the GB argument. With this argument
one can use either the first, second, or third Guttman bound to select the intrinsic dimensionality of
the latent vector. This bound, together with the regularized correlation matrix, is used in a maximum
likelihood factor analysis with simple-structure rotation. For more information on Step 2, see dimGB
and mlFA.

Step 3 (obtaining factor scores) is performed using the type argument. It determines factor scores:
the score each object/individual would obtain on each of the latent factors. The type argument
determines the type of factor score that is calculated. For more information on Step 3, see facScore.

When printInfo = TRUE additional information is printed on-screen after the full procedure has
run its course. This additional information pertains to each of the steps mentioned above. For
Step 1 it reiterates the thresholding value for redundancy filtering and gives the number of features
retained after this filtering. It also reiterates the number of folds used in determining the optimal
penalty value as well as this value itself. Moreover, it provides the value of the Kaiser-Meyer-Olkin
index on the optimal regularized correlation matrix estimate (see SA). For Step 2 it reiterates which
Guttman bound was used in determining the number of latent factors as well as the number of
latent factors retained. It also gives the proportion of explained variance under the factor solution
of the chosen latent dimension (see dimVAR). For step 3 it reiterates the type of factor score that was
calculated. Also, it prints the lowest ‘determinacy score’ amongst the latent factors (see facSMC).

The factor scores in the $Scores slot of the output (see below) can be directly used as input features
in any prediction or classification procedure. In case of external (rather than internal) validation one
can use the parameter matrices in the $Loadings and $Uniqueness slots in combination with fresh
data to provide a validation factor projection based on the training solution. See Peeters et al.
(2019).

Value

The function returns an object of class list:

$Scores An object of class data.frame containing the factor scores. Observations are
represented in the rows. Each column represent a latent factor.

$FilteredData Subsetted data matrix containing only those features retained after redundancy
filtering.

$FilteredCor A correlation matrix based on the data in the $FilteredData slot.

$optPen A numeric scalar representing the optimal value for the penalty parameter.

$optCor A matrix representing the regularized correlation matrix under the optimal
penalty-value.

$m An integer correspond to number of latent factors retained under the chosen
Guttman bound.
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$Loadings A matrix of class loadings representing the loadings matrix in which in which
each element λjk is the loading of the jth feature on the kth latent factor.

$Uniqueness A matrix representing the diagonal matrix carrying the unique variances.

$Exvariance A numeric vector representing the cumulative variance for each respective latent
feature.

$determinacy A numeric vector indicating, for each factor, the squared multiple correlation
between the observed features and the common latent factor.

$used.seed A numeric or integer used as the starting seed in random number generation.

Note

When seed = NULL the starting seed is determined by drawing a single integer from the integers
1:9e5. This non-user-supplied seed is also found in the $used.seed slot of the output.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

RF, subSet, regcor, dimGB, mlFA, facScore

Examples

## Simulate some data according to a factor model with 3 latent factors
simDAT <- FAsim(p = 24, m = 3, n = 40, loadingvalue = .9)
X <- simDAT$data

## Perform the lot
FullMonty <- autoFMradio(X, GB = 1, seed = 303)

dimGB Assess the latent dimensionality using Guttman bounds

Description

dimGB is a function that calculates the first, second, and third Guttman (lower-)bounds to the dimen-
sionality of the latent vector. These can be used to choose the number of latent factors.

Usage

dimGB(R, graph = TRUE, verbose = TRUE)

https://arxiv.org/abs/1903.11696
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Arguments

R (Regularized) correlation matrix.

graph A logical indicating if the results should be visualized.

verbose A logical indicating if the function should run silently.
Runs silently when verbose = FALSE.

Details

The communality in factor analysis refers to the amount of variance (of feature j) explained by the
latent features. The correlation of any feature with itself can then be decomposed into common
variance (the communality) and unique variance. This implies that unity (1) minus the unique vari-
ance for feature j equals the communality for feature j. From the matrix perspective one can then
construct a reduced correlation matrix: the correlation matrix with communalities in the diagonal.
This reduced correlation matrix is, by the assumptions on the factor model, Gramian and of rank
m, with m indicating the intrinsic dimensionality of the latent vector. The dimension of the latent
vector (i.e., the number of common factors) can then be assessed by evaluating the rank of the sam-
ple correlation matrix in which the diagonal elements are replaced with appropriate communality
estimates.

In our case, which is often high-dimensional, we use the regularized correlation matrix as our
sample-representation of the population correlation matrix. The diagonal elements are then replaced
with Guttman’s lower-bound estimates for the communalities (Guttman, 1956). Guttman (1956)
gives 3 (ordered) lower-bound estimates. The first estimate is the most conservative, using 0 as a
lower-bound estimate of the communalities. From this perspective, every positive eigenvalue of the
reduced sample correlation matrix is indicative of a latent factor whose contribution to variance-
explanation is above and beyond mere unique variance. The decisonal approach would then be to
retain all such factors. See Peeters et al. (2019) for additional detail.

The Guttman approach has historically been used as a lower-bound estimate of the latent dimen-
sionality. We consider the decisional approach stated above to give an upper-bound. Peeters et al.
(2019) contains an extensive simulation study showing that in high-dimensional situations this deci-
sional approach provides a reliable upper-bound. The choice of the number of factors can be further
assessed with the SMC and dimVAR functions. Assessments provided by these latter functions may
inform if the result of the decisional rule above should be accepted or be treated as an upper-bound.

When graph = TRUE the Guttman bounds are visualized. It plots the consecutive eigenvalues for
each of the reduced correlation matrices. The number of positive eigenvalues for each respective
reduced correlation matrix then corresponds to each of the respective Guttman bounds. The visual-
ization may be of limited value when the feature-dimension gets (very) large.

Value

The function returns an object of class table. The entries correspond to the first, second, and third
Guttman bounds.

Note

• Again, from a historical perspective, the decisional rule would have been used as a lower-
bound to the question of the number of latent common factors. In high-dimensional situations
we recommend to use it as an upper-bound.
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• Other functions for factor analytic dimensionality assessment are dimIC and dimLRT. In high-
dimensional situations usage of dimGB is recommended over these other functions.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Guttman, L. (1956). Best possible systematic estimates of communalities. Psychometrika, 21:273–
285.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

SMC, dimVAR, FAsim

Examples

## Simulate some data according to a factor model with 5 latent factors
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 100)
simDAT$cormatrix

## Evaluate the Guttman bounds
## First Guttman bound indicates to retain 5 latent factors
GB <- dimGB(simDAT$cormatrix)
print(GB)

dimIC Assess the latent dimensionality using information criteria

Description

A function that calculates either the AIC or the BIC on the factor model. These can be used to
choose the number of latent factors.

Usage

dimIC(R, n, maxdim, Type = "BIC", graph = TRUE, verbose = TRUE)

Arguments

R (Regularized) correlation matrix.

n A numeric scalar representing the sample size.

maxdim A numeric integer or integer indicating the maximum factor dimension to be
assessed.

https://arxiv.org/abs/1903.11696
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Type A character indicating the type of IC to be calculated.
Must be one of: "AIC", "BIC".

graph A logical indicating if the results should be visualized.

verbose A logical indicating if the function should run silently.
Runs silently when verbose = FALSE.

Details

Information criteria (IC) are often used in selecting the number of latent factor to retain. IC aim to
balance model fit with model complexity. They evaluate (minus 2 times) the maximized value of
the (model-dependent) likelihood function weighed with a penalty function that is dependent on the
free parameters in the model. Different penalizations define the different types of IC. The strategy
would be to determine IC scores for a range of consecutive values of the latent factor dimension.
This function then determines scores for factor solutions ranging from 1 to maxdim latent factors.
The solution with the lowest IC score is deemed optimal. The function allows for the calculation of
either the Akaike information criterion (AIC; Akaike, 1973) or the Bayesian information criterion
(BIC; Schwarz, 1978). Also see the Supplementary Material of Peeters et al. (2019) for additional
detail.

When graph = TRUE the IC scores are visualized. The graph plots the IC score against the consecu-
tive dimensions of the factor solution.

Value

The function returns an object of class data.frame. The first column represents the assessed di-
mensions running from 1 to maxdim. The second column represents the corresponding values of the
chosen information criterion.

Note

• The argument maxdim cannot exceed the Ledermann-bound (Ledermann, 1937): ⌊[2p + 1 −
(8p+ 1)1/2]/2⌋, where p indicates the observed-feature dimension. Usually, one wants to set
maxdim much lower than this bound.

• Other functions for factor analytic dimensionality assessment are dimGB and dimLRT. In high-
dimensional situations usage of dimGB on the regularized correlation matrix is recommended.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In:
B. N. Petrov and F. Csaki (Eds.) Second International Symposium on Information Theory, pages
267–281. Budapest: Akademiai Kaido.

Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple factor analysis.
Psychometrika, 2:85–93.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

Schwarz, G.E. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461–464.

https://arxiv.org/abs/1903.11696
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See Also

dimGB, FAsim

Examples

## Simulate some data according to the factor model
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 100)
simDAT$cormatrix

## Calculate the AIC for models of factor dimension 1 to 20
AIC <- dimIC(simDAT$cormatrix, n = 100, Type = "AIC", maxdim = 20)
print(AIC)

## Calculate the BIC for models of factor dimension 1 to 20
BIC <- dimIC(simDAT$cormatrix, n = 100, Type = "BIC", maxdim = 20)
print(BIC)

dimLRT Assess the latent dimensionality using a likelihood ratio test

Description

dimLRT is a function that evaluates a likelihood ratio test on the factor model. It can be used to
choose the number of latent factors.

Usage

dimLRT(R, X, maxdim, rankDOF = TRUE, graph = TRUE,
alpha = .05, Bartlett = FALSE, verbose = TRUE)

Arguments

R (Regularized) correlation matrix.

X A (possibly centered and scaled and possibly subsetted) data matrix.

maxdim A numeric integer or integer indicating the maximum factor dimension to be
assessed.

rankDOF A logical indicating if the degrees of freedom should be based on the rank of
the raw correlation matrix.

graph A logical indicating if the results should be visualized.

alpha A numeric scalar representing the alpha level. Only used when graph = TRUE.

Bartlett A logical indicating if the Bartlett correction should be applied.

verbose A logical indicating if the function should run silently.
Runs silently when verbose = FALSE.
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Details

The most formal approach to factor analytic dimensionality assessment is through likelihood ratio
(LR) testing. The basic idea is to test the m-factor model against the saturated model. The cor-
responding LR criterion then converges, under the standard correlation matrix and corresponding
parameter estimates under m-factors, to (n − 1) times a certain discrepancy function evaluated at
the maximum-likelihood-parameters under the m-factor model. This quantity is approximately χ2-
distributed under certain regularity conditions (Amemiya & Anderson, 1990). The general strategy
would then be to sequentially test solutions of increasing dimensionality m = 1, . . . ,maxdim un-
til the null hypothesis (stating that the m-factor model holds) is not rejected at Type-I error level
alpha.

The degrees of freedom for the LRT under the m-factor model equals the number of parameters in
the saturated model (i.e., the unstructured sample correlation) minus the number of freely estimable
parameters in the m-factor model. Note that the general stategy above makes use of asymptotic re-
sults. In our setting, however, the observation dimension (n) is usually small relative to the feature
dimension (p). Hence, the standard test will in a sense overestimate the degrees of freedom. One
simple option dealing with this observation would be to adapt the degrees of freedom to incorpo-
rate the rank deficiency of R. This road is taken when rankDOF = TRUE. Bartlett (1950) proposed a
correction factor when the sample size is small to make the test statistic behave more χ2-like. This
correction factor is used when Bartlett = TRUE.

When graph = TRUE the LRT results are visualized. The graph plots the LRT p-values against the
consecutive dimensions of the factor solution. A horizontal line is plotted at the value provided in
the alpha argument.

Unless the number of observations is much larger than the number of features, the LRT is not rec-
ommended for inference in general. In Peeters et al. (2019) the LRT was assessed in a comparative
setting inviolving high-dimensional factor models.

Value

The function returns an object of class data.frame. The first column represents the assessed di-
mensions running from 1 to maxdim. The second column represents the observed values of the LRT
statistic. The third column represents the corresponding p-values.

Note

• Note that, for argument X, the observations are expected to be in the rows and the features are
expected to be in the columns.

• The argument maxdim cannot exceed the Ledermann-bound (Ledermann, 1937): ⌊[2p + 1 −
(8p+ 1)1/2]/2⌋, where p indicates the observed-feature dimension. Usually, one wants to set
maxdim much lower than this bound.

• note that, if p > n, then the maximum rank of the raw correlation matrix is n− 1. In this case
there is an alternative Ledermann-bound when rankDOF = TRUE. The number of information
points in the correlation matrix is then given as n × (n − 1)/2 and this number must exceed
p× maxdim + p− (maxdim × (maxdim − 1))/2, putting more restrictions on maxdim.

• Other functions for factor analytic dimensionality assessment are dimGB and dimIC. In high-
dimensional situations usage of dimGB on the regularized correlation matrix is recommended.
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Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>, Caroline Ubelhor

References

Amemiya, Y., & Anderson, T.W. (1990). Asymptotic chi-square tests for a large class of factor
analysis models. The Annals of Statistics, 18:1453–1463.

Bartlett, M.S. (1950). Tests of significance in factor analysis. British Journal of Psychology (Statis-
tics Section), 3:77–85.

Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple factor analysis.
Psychometrika, 2:85–93.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

dimGB, FAsim

Examples

## Simulate some data according to the factor model
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 500)
simDAT$cormatrix

## Calculate the LRT for models of factor dimension 1 to 20
LRT <- dimLRT(simDAT$cormatrix, simDAT$data, maxdim = 20, rankDOF = FALSE)
print(LRT)

dimVAR Assessing variances under factor solutions

Description

dimVAR is a support function that assesses the proportion of and cumulative variances for a range of
factor solutions.

Usage

dimVAR(R, maxdim, graph = TRUE, verbose = TRUE)

Arguments

R (Regularized) correlation matrix.
maxdim A numeric integer or integer indicating the maximum factor dimension to be

assessed.
graph A logical indicating if the results should be visualized.
verbose A logical indicating if the function should run silently.

Runs silently when verbose = FALSE.

https://arxiv.org/abs/1903.11696
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Details

To assess a factor solution under m factors one might look at the proportion of explained variance.
The dimVAR function calculates the proportion of variance explained by any factor as well as the
proportion of variance explained by all factors for each factor solution raging from 1 to maxdim.
Qualitatively, we want the proportion of variance explained by all factors to be appreciable (rules
of thumb would say in excess of 70%). Moreover, one would want the proportion of variance
explained by the kth factor in relation to the (k − 1)th factor to be appreciable and the proportion
of variance of the (k + 1)th factor in relation to the kth factor to be negligible.

When graph = TRUE also a graph is returned visualizing the total cumulative variance against the
dimension of the factor solution. Hence, it plots the total cumulative variances against the respective
factor solutions ranging from 1 to maxdim. The point at which the graph flattens out is indicative of
a formative number of latent factors.

Value

Returns an object of class list.

$CumVar Contains a numeric vector with the cumulative variances explained for each
factor solution from 1 to maxdim.

$varianceTables

This slot is itself a list. It contains, for each factor solution, a matrix with the
sum of squares (SS), proportion variance (PV), and cumulative variance (CV)
for each respective latent feature. Say one wants to access the variance table for
a solution under 5-factors. Then one can call $varianceTables$`dimension =
5`. Similar calls are made to retrieve the variance table for other factor solutions.

Note

• The argument maxdim cannot exceed the Ledermann-bound (Ledermann, 1937): ⌊[2p + 1 −
(8p+ 1)1/2]/2⌋, where p indicates the observed-feature dimension. Usually, one wants to set
maxdim much lower than this bound.

• The tabulations in the $varianceTables slot are based on unrotated maxmimum likelihood
factor solutions. Note that the total cumulative variance does not depend on the choice of
(orthogonal) rotation.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple factor analysis.
Psychometrika, 2:85–93.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

dimGB, FAsim, mlFA, SMC

https://arxiv.org/abs/1903.11696
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Examples

## Simulate some high-dimensional data according to the factor model
simDAT <- FAsim(p = 50, m = 5, n = 40)

## Regularize the correlation matrix
RegR <- regcor(simDAT$data)

## Assess proportion and cumulative variances for a range of factor solutions
## Inspect, for example, the variance table for the 5-factor solution
V <- dimVAR(RegR$optCor, maxdim = 20)
V$varianceTables$`dimension = 5`

facScore Compute factor scores

Description

facScore is a function that computes factor scores, the score each person/object attains on each
latent factor.

Usage

facScore(X, LM, UM, type = "thomson")

Arguments

X A (scaled and possibly subsetted) data matrix.

LM A (rotated) loadings matrix. Usually the $Loadings-slot object from the mlFA
function output.

UM A diagonal uniquenesses matrix. Usually the $Uniqueness-slot object from
the mlFA function output.

type A character indicating the type of factor score to calculate.
Must be one of: "thomson", "bartlett", "anderson".

Details

Once a factor model is fitted one may desire an estimate of the score each object/individual would
obtain on each of the latent factors. Such scores are referred to as factor scores. The facScore
function provides several types of factor score estimates. The default are Thomson-type scores
(Thomson, 1939). These may be viewed as (empirical) Bayesian-type scores. Bartlett-type scores
(Bartlett, 1937) are unbiased but less efficient in terms of mean-squared error. Under the orthogonal
model the latent factors are orthogonal in the population and, hence, the Thomson and Bartlett-type
factor scores will be near orthogonal in the sample. Anderson and Rubin (1956) constructed an
alternative estimator for the factor scores that enforces their orthogonality in the sample.
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Value

The function returns an object of class data.frame. Observations are represented in the rows. Each
column represent a latent factor.

Note

The input data (argument X) are assumed to be scaled (or at least centered). The UM matrix is
assumed to be positive definite. The LM matrix is assumed to be of full column rank.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Anderson, T.W., & Rubin, H. (1956). Statistical inference in factor analysis. In Proceedings of the
Third Berkeley Symposium on Mathematical Statistics and Probability, volume 5: Contributions to
Econometrics, Industrial Research, and Psychometry, pages 111–150. Berkeley, CA: University of
California Press.

Bartlett, M.S. (1937). The statistical conception of mental factors. British Journal of Psychology,
28:97–104.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

Thomson, G. (1939). The Factorial Analysis of Human Ability. London: University of Londen
Press.

See Also

dimGB, mlFA, facSMC

Examples

## Simulate some data according to a factor model with 5 latent factors
## Simulate high-dimensional situation in the sense that p > n
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 40, loadingvalue = .9)
simDAT$cormatrix

## Regularize the correlation matrix
RegR <- regcor(simDAT$data)

## Evaluate the Guttman bounds
## First Guttman bound indicates to retain 5 latent factors
GB <- dimGB(RegR$optCor)
print(GB)

## Produce ML factor solution under 5 factors
## Print loadings structure of this solution
fit <- mlFA(RegR$optCor, 5)
print(fit$Loadings, digits = 2, cutoff = .3, sort = TRUE)

https://arxiv.org/abs/1903.11696
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## Obtain factor-scores
scores <- facScore(scale(simDAT$data), fit$Loadings, fit$Uniqueness)
print(scores)

facSMC Evaluate the determinacy of factor scores

Description

facSMC is a function with which one may evaluate the determinacy of factor scores.

Usage

facSMC(R, LM)

Arguments

R (Regularized) correlation matrix.

LM A (rotated) loadings matrix. Usually the $Loadings-slot object from the mlFA
function output.

Details

The facSMC function calculates the squared multiple correlations between the observed features and
the common latent factors. The closer to unity, the lesser the problem of factor-score indeterminacy
and the better one is able to uniquely determine the factor scores. In practice, a squared multiple
correlation equalling or exceeding .9 would be considered adequate. See Mulaik (2010, Chapter
13) and Peeters et al. (2019, Supplementary Materials) for further details.

Value

The function returns a numeric vector indicating, for each factor, the squared multiple correlation
between the observed features and the common latent factor.

Note

Note that the computations assume an orthogonal factor model. Hence, only orthogonal rotations
of the loadings matrix should be used (or no rotation at all).

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Mulaik, S.A. (2010). Foundations of Factor Analysis. Boca Raton: Chapman & Hall/CRC, 2nd
edition.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

https://arxiv.org/abs/1903.11696
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See Also

facScore

Examples

## Simulate some data according to a factor model with 5 latent factors
## Simulate high-dimensional situation in the sense that p > n
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 40, loadingvalue = .9)
simDAT$cormatrix

## Regularize the correlation matrix
RegR <- regcor(simDAT$data)

## Evaluate the Guttman bounds
## First Guttman bound indicates to retain 5 latent factors
GB <- dimGB(RegR$optCor)
print(GB)

## Produce ML factor solution under 5 factors
## Print loadings structure of this solution
fit <- mlFA(RegR$optCor, 5)
print(fit$Loadings, digits = 2, cutoff = .3, sort = TRUE)

## Obtain factor-scores
scores <- facScore(scale(simDAT$data), fit$Loadings, fit$Uniqueness)
print(scores)

## Evaluate determinacy of factor scores
fd <- facSMC(RegR$optCor, fit$Loadings)
print(fd)

FAsim Simulate data according to the common factor analytic model

Description

FAsim is a function that enables the simulation of data according to the common factor analytic
model.

Usage

FAsim(p, m, n, simplestructure = TRUE, balanced = TRUE,
loadingfix = TRUE, loadingnegative = TRUE,
loadingvalue = .8, loadingvaluelow = .2, numloadings,
loadinglowerH = .7, loadingupperH = .9,
loadinglowerL = .1, loadingupperL = .3)
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Arguments

p A numeric integer or integer indicating the number of observed features.

m A numeric integer or integer indicating the latent dimension of the factor so-
lution (i.e., the number of factors).

n A numeric integer or integer indicating the number of samples.
simplestructure

A logical indicating if the generating factor structure should be factorially
pure.

balanced A logical indicating if the high (i.e., qualitatively ’significant’) loadings should
be divided evenly over the respective factors.

loadingfix A logical indicating if the loadings should have a fixed value.
loadingnegative

A logical indicating if, next to positive, also negative loadings should be
present.

loadingvalue A numeric indicating the value for high (i.e., qualitatively ’significant’) load-
ings. Used when loadingfix = TRUE.

loadingvaluelow

A numeric indicating the value for low loadings. Used when loadingfix =
TRUE & simplestructure = FALSE.

numloadings A numeric vector with length equalling argument m, indicating the number of
high (i.e., qualitatively ’significant’) loadings per factor.
Used when balanced = FALSE.

loadinglowerH A numeric indicating the lower-bound of high (i.e., qualitatively ’significant’)
loadings. Used when loadingfix = FALSE.

loadingupperH A numeric indicating the upper-bound of high (i.e., qualitatively ’significant’)
loadings. Used when loadingfix = FALSE.

loadinglowerL A numeric indicating the lower-bound of low (i.e., qualitatively ’non-significant’)
loadings. Used when loadingfix = FALSE & simplestructure = FALSE.

loadingupperL A numeric indicating the upper-bound of low (i.e., qualitatively ’non-significant’)
loadings. Used when loadingfix = FALSE & simplestructure = FALSE.

Details

FAsim provides certain flexibility when generating data according to an orthogonal common factor-
analytic model. It can produce data according to, for example, (i) factorially pure loadings struc-
tures, (ii) loadings-structures with only positive entries or both positive and negative loadings, (iii)
loadings-structures with fixed values or varying values, (iv) balanced and unbalanced loadings-
structures.

Value

The function returns an object of class list:

$data A standardized data matrix of size n× p.

$loadings Loadings matrix of size p×m on which the data-generation was based.
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$Uniqueness A numeric vector of size p representing the uniquenesses on which the data-
generation was based.

$cormatrix A p× p correlation matrix based on the generated data in slot $data.

Note

• A uniform distribution is assumed when generating draws between loadinglowerH and loadingupperH.

• A uniform distribution is assumed when generating draws between loadinglowerL and loadingupperL.

• The argument m cannot exceed the Ledermann-bound (Ledermann, 1937): ⌊[2p + 1 − (8p +
1)1/2]/2⌋, where p indicates the observed-feature dimension.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Ledermann, W. (1937). On the rank of the reduced correlational matrix in multiple factor analysis.
Psychometrika, 2:85–93.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

dimGB, mlFA, facScore

Examples

## Simulate some data according to a factor model with 3 latent factors
## Balanced and factorially pure loadings structure
simDAT <- FAsim(p = 24, m = 3, n = 40, loadingvalue = .9)
simDAT$loadings

## Simulate some data according to a factor model with 3 latent factors
## Unbalanced and factorially pure loadings structure
simDAT <- FAsim(p = 24, m = 3, n = 40, loadingvalue = .9,

balanced = FALSE, numloadings = c(10,10,4))
simDAT$loadings

## Simulate some data according to a factor model with 3 latent factors
## Unbalanced and factorially non-pure loadings structure
simDAT <- FAsim(p = 24, m = 3, n = 40, loadingvalue = .9,

balanced = FALSE, numloadings = c(10,10,4),
simplestructure = FALSE)

simDAT$loadings

## Simulate some data according to a factor model with 3 latent factors
## Unbalanced and factorially non-pure loadings structure
## Non-fixed high and low loadings
simDAT <- FAsim(p = 24, m = 3, n = 40, loadingvalue = .9,

balanced = FALSE, numloadings = c(10,10,4),

https://arxiv.org/abs/1903.11696
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simplestructure = FALSE, loadingfix = FALSE)
simDAT$loadings

mlFA Maximum likelihood factor analysis

Description

mlFA is a function that performs a maximum likelihood factor analysis.

Usage

mlFA(R, m)

Arguments

R (Regularized) correlation matrix.
m A numeric integer or integer indicating the latent dimension of the factor so-

lution (i.e., the number of factors).

Details

This function is basically a wrapper around the factanal function from the stats package. Its purpose
is to produce a factor solution of the chosen dimension (argument m) by a maximum likelihood
estimation procedure (Joreskog, 1967). The wrapper ensures that the model is fitted under the same
circumstances under which latent dimensionality is assessed with functions such as dimLRT and
dimIC. The function produces a Varimax rotated (Kaiser, 1958) factor solution. The output can be
used to produce factor scores by the facScore function.

Value

The function returns an object of class list:

$Loadings A matrix of class loadings representing the loadings matrix in which in which
each element λjk is the loading of the jth feature on the kth latent factor.

$Uniqueness A matrix representing the diagonal matrix carrying the unique variances.
$rotmatrix A matrix representing the Varimax rotation matrix.

The $rotmatrix slot is only present when m is larger than 1.

Note

• Note that the order of the features in the $Loadings and $Uniqueness slots of the output is
determined by the order of the features for the input argument R. As the $Loadings slot gives
an object of class "loadings" it can be subjected to the print function, which sorts the output
to emphasize the loadings structure when calling sort = TRUE.

• Note that the maximum likelihood procedure is stable when a regularized correlation matrix
is used as the input for argument R.

• In high-dimensional situations usage of dimGB on the regularized correlation matrix is recom-
mended to determine the value for argument m.

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/factanal.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/stats-package.html
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Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Joreskog, K.G (1967). Some contributions to maximum likelihood factor analysis. Psychometrika,
32:443–482.

Kaiser, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika,
23:187–200.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

dimGB, facScore

Examples

## Simulate some data according to a factor model with 5 latent factors
## Simulate high-dimensional situation in the sense that p > n
## $cormatrix gives the correlation matrix on the generated data
simDAT <- FAsim(p = 50, m = 5, n = 40, loadingvalue = .9)
simDAT$cormatrix

## Regularize the correlation matrix
RegR <- regcor(simDAT$data)

## Evaluate the Guttman bounds
## First Guttman bound indicates to retain 5 latent factors
GB <- dimGB(RegR$optCor)
print(GB)

## Produce ML factor solution under 5 factors
## Print loadings structure of this solution
fit <- mlFA(RegR$optCor, 5)
print(fit$Loadings, digits = 2, cutoff = .3, sort = TRUE)

radioHeat Visualize a (correlation) matrix as a heatmap

Description

radioHeat is a function that provides dedicated heatmapping of a radiomics-based correlation ma-
trix It can be used to visually assess the elements of a (possibly thresholded) matrix. It also supports
the assessment of collinearity.

https://arxiv.org/abs/1903.11696
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Usage

radioHeat(R, lowColor = "blue", highColor = "red", labelsize = 10,
diag = TRUE, threshold = FALSE, threshvalue = .95,
values = FALSE, textsize = 10, legend = TRUE, main = "")

Arguments

R (regularized) correlation matrix

lowColor A character that determines the color scale in the negative range.
highColor A character that determines the color scale in the positive range.
labelsize A numeric that sets the textsize of row and column labels.
diag A logical determining if the diagonal elements of the matrix should be in-

cluded in the color scaling. This argument is only used when R is a square
matrix.

threshold A logical determining if only values above a certain (absolute) threshold should
be visualized.

threshvalue A numeric indicating the absolute thresholding value when threshold = TRUE.
values A logical determining the optional inclusion of cell-values.
textsize A numeric indicating the textsize of the cell-values when values = TRUE.
legend A logical indicating whether a color legend should be included.
main A character giving the main figure title.

Details

This function utilizes ggplot2 (Wickham, 2009) to visualize a matrix as a heatmap: a false color
plot in which the individual matrix entries are represented by colors. lowColor determines the
color scale for matrix entries in the negative range. highColor determines the color scale for
matrix entries in the positive range. For the colors supported by the arguments lowColor and
highColor, see https://stat.columbia.edu/~tzheng/files/Rcolor.pdf. White entries in
the plot represent the midscale value of 0. One can opt to set the diagonal entries to the midscale
color of white when one is interested in (heatmapping) the off-diagonal elements only. To achieve
this, set diag = FALSE. Naturally, the diag argument is only used when the input matrix M is a square
matrix.

The intended usage is to visualize a correlation matrix on radiomic features as a heatmap. Such a
heatmap may be used to support the assessment of strong collinearity or even redundancy amongst
the features. To this end, it is also possible to visualize a thresholded correlation matrix when
threshold = TRUE based on the absolute thresholding value given in the threshvalue argument
(hence the thresholding is done internally). This enables easier visual access to (blocks of) collinear-
ity in radiomic-feature-based correlation matrices.

Note

• While geared towards the visualization of correlation matrices, the function is quite general,
in the sense that it can represent any matrix as a heatmap.

• When values = TRUE and threshold = TRUE the cell-values are those of the thresholded ma-
trix.

https://cran.r-project.org/package=ggplot2
https://stat.columbia.edu/~tzheng/files/Rcolor.pdf
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Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Wickham, H. (2009). ggplot2: elegant graphics for data analysis. New York: Springer.

See Also

RF, regcor

Examples

## Generate some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
R <- cor(X)

## Visualize the correlation matrix as a heatmap
radioHeat(R)

## Remove diagonal entries from visualization
radioHeat(R, diag = FALSE)

## Additionally, visualize only those entries whose absolute value exceed .5
radioHeat(R, diag = FALSE, threshold = TRUE, threshvalue = .5)

## Additionally, include cell values
radioHeat(R, diag = FALSE, threshold = TRUE, threshvalue = .5,

values = TRUE, textsize = 3)

regcor Regularized correlation matrix estimation

Description

regcor is a function that determines the optimal penalty value and, subsequently, the optimal
Ledoit-Wolf type regularized correlation matrix using K-fold cross validation of the negative log-
likelihood.

Usage

regcor(X, fold = 5, verbose = TRUE)
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Arguments

X A (possibly centered and scaled and possibly subsetted) data matrix.

fold A numeric integer or integer indicating the number of folds to use in cross-
validation.

verbose A logical indicating if function should run silently.
Runs silently when verbose = FALSE.

Details

This function estimates a Ledoit-Wolf-type (Ledoit & Wolf, 2004) regularized correlation matrix.
The optimal penalty-value is determined internally by K-fold cross-validation of the of the negative
log-likelihood function. The procedure is efficient as it makes use of the Brent root-finding proce-
dure (Brent, 1971). The value at which the K-fold cross-validated negative log-likelihood score is
minimized is deemed optimal. The function employs the Brent algorithm as implemented in the op-
tim function. It outputs the optimal value for the penalty parameter and the regularized correlation
matrix under this optimal penalty value. See Peeters et al. (2019) for further details.

The optimal penalty-value can be used to assess the conditioning of the estimated regularized cor-
relation matrix using, for example, a condition number plot (Peeters, van de Wiel, van Wieringen,
2016). The regularized correlation matrix under the optimal penalty can serve as the input to func-
tions that assess factorability (SA), evaluate optimal choices of the latent common factor dimension-
ality (e.g., dimGB), and perform maximum likelihood factor analysis (mlFA).

Value

The function returns an object of class list:

$optPen A numeric scalar representing the optimal value for the penalty parameter.

$optCor A matrix representing the regularized correlation matrix under the optimal
penalty-value.

Note

Note that, for argument X, the observations are expected to be in the rows and the features are
expected to be in the columns.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Brent, R.P. (1971). An Algorithm with Guaranteed Convergence for Finding a Zero of a Function.
Computer Journal 14: 422–425.

Ledoit, O, & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance
matrices. Journal of Multivariate Analysis, 88:365–411.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

Peeters, C.F.W., van de Wiel, M.A., & van Wieringen, W.N. (2016). The spectral condition number
plot for regularization parameter determination, arXiv:1608.04123v1 [stat.CO].

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html
https://arxiv.org/abs/1903.11696
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See Also

RF, subSet, SA, dimGB, mlFA

Examples

## Generate some (high-dimensional) data
## Get correlation matrix
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
R <- cor(X)

## Redundancy visualization, at threshold value .9
radioHeat(R, diag = FALSE, threshold = TRUE, threshvalue = .9)

## Redundancy-filtering of correlation matrix
Rfilter <- RF(R, t = .9)
dim(Rfilter)

## Subsetting data
DataSubset <- subSet(X, Rfilter)
dim(DataSubset)

## Obtain regularized correlation matrix
RegR <- regcor(DataSubset, fold = 5, verbose = TRUE)
RegR$optPen ## optimal penalty-value

RF Redundancy filtering of a square (correlation) matrix

Description

RF is a function that performs redundancy filtering (RF) of a square (correlation) matrix.

Usage

RF(R, t = .95)

Arguments

R Square (correlation) matrix.

t A scalar numeric indicating the absolute value for thresholding.
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Details

Radiomic features can be very strongly correlated. The sample correlation matrix on extracted
radiomic features will then often display strong collinearity. The collinearity may be so strong
as to imply redundant information, in the sense that some entries will approach perfect (negative)
correlation. Hence, one may wish to perform redundancy-filtering on the raw sample correlation
matrix in such situations.

The RF function uses an Algorithm from Peeters et al. (2019) to remove the minimal number of
redundant features under absolute marginal correlation threshold t. We recommend setting t ∈
[.9, .95]. Details of the algorithm can be found in Peeters et al. (2019).

The function returns a redundancy-filtered correlation matrix. This return output may subsequently
be used in the subSet function. This is a convenience function that subsets a dataset to the features
retained after redundancy-filtering.

Value

Returns a redundancy-filtered matrix.

Note

• While geared towards the redundancy filtering of correlation matrices, the function is quite
general, in the sense that it can be used to filter any square matrix.

• When the input matrix R is a correlation matrix, then argument t should satisfy −1 < t < 1,
for the return matrix to be sensical for further analysis.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

subSet, regcor

Examples

## Generate some (high-dimensional) data
## Get correlation matrix
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
R <- cor(X)

## Redundancy visualization, at threshold value .9
radioHeat(R, diag = FALSE, threshold = TRUE, threshvalue = .9)

https://arxiv.org/abs/1903.11696
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## Redundancy-filtering of correlation matrix
Rfilter <- RF(R, t = .9)
dim(Rfilter)

SA Calculate the KMO measure of feature-sampling adequacy

Description

SA is a function that calculates the Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy.

Usage

SA(R)

Arguments

R (Regularized) covariance or correlation matrix.

Details

The SA function calculates the Kaiser-Meyer-Olkin (KMO) measure of feature-sampling adequacy
(Kaiser & Rice, 1974). It provides a practical option for the assessment of factorability. Factorabil-
ity refers to the assessment of the ability to identify coherent common latent factors from a given
correlation matrix. In common factor analysis the observed features are assumed to be independent
given the common latent features. Under this crucial model assumption, the inverse of the popula-
tion correlation matrix is diagonal. Hence, to assess factorability one could assess if the inverse of
the sample correlation matrix is near-diagonal. The KMO index provides for such an assessment
by "comparing the sizes of the off-diagonal entries of the regularized correlation matrix to the sizes
of the off-diagonal entries of its scaled inverse" (Peeters et al., 2019). It takes values in [0, 1] and
larger values are preferred. A KMO index between .9 and 1 would be considered to be indicative
of great factorability. For rules of thumb regarding interpretation of KMO index value, see Kaiser
(1970). The SA function calculates an overall KMO index as well as the KMO index per observed
feature.

The intended usage of the SA function is to assess if performing a factor analysis on a given (regu-
larized) correlation matrix can be considered appropriate. As such, it succeeds usage of the regcor
function (for high-dimensional and/or strongly collinear settings) and precedes usage of the dimGB
and mlFA functions.

Value

The function returns an object of class list:

$KMO A numeric scalar representing the overall KMO index.

$KMOfeature A numeric vector giving the KMO index per feature.
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Note

The input matrix R should be nonsingular for the KMO to be computed. When R is singular one
may regularize it using the regcor function.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Kaiser, H.F. (1970). A second-generation little jiffy. Psychometrika, 35:401–415.

Kaiser, H.F., & Rice., J. (1974). Little jiffy, mark IV. Educational and Pscyhological Measurement,
34:111–117.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

regcor, dimGB, mlFA

Examples

## Generate some (high-dimensional) data
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]

## Obtain regularized correlation matrix
RegR <- regcor(X, fold = 5, verbose = TRUE)

## Assess factorability through the KMO index
factorable <- SA(RegR$optCor)
factorable$KMO
factorable$KMOfeature

SMC Compare squared multiple correlations with model-based communal-
ities

Description

SMC is a function that compares the best lower-bound estimates to the communalities with the model-
based communalities implied by a factor solution of dimension m.

Usage

SMC(R, LM)

https://arxiv.org/abs/1903.11696
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Arguments

R (Regularized) correlation matrix.

LM (Rotated) factor loadings matrix.

Details

This function can be used to qualitatively assess the choice of dimensionality (as well as the fit) in
the m-factor model. This is done using the concept of communalities. The communality refers to
the amount of variance of feature j explained by the latent features. It is then of interest to compare
lower-bound estimates of the (population) communalities to the extracted communalities under the
m-factor model.

Guttman (1956) gave the best possible lower-bound estimates to the communalities, which can es-
sentially be considered squared multiple correlations: the proportion of variance in feature j that is
explained by the remaining p − 1 features. To assess a factor model, these might be compared to
the retrieved estimated communalities under the m-factor model. When the chosen latent dimen-
sionality is sufficient then one would expect that, for almost all features, the retrieved communality
approximately equals or exceeds its corresponding lower-bound estimate. If this is not the case then
one might have extracted too few factors.

Value

The function returns a matrix. The first column (labeled ’SMC’) contains the lower-bound esti-
mates to the communalities. The second column (labeled ’Communalities’) contains the retrieved
estimated communalities under the m-factor model.

Note

Note that the choice of orthogonal rotation does not affect the model-implied communality esti-
mates.

Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Guttman, L. (1956). Best possible systematic estimates of communalities. Psychometrika, 21:273–
285.

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

dimGB, FAsim, mlFA, dimVAR

https://arxiv.org/abs/1903.11696
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Examples

## Simulate some high-dimensional data according to the factor model
simDAT <- FAsim(p = 50, m = 5, n = 40)

## Regularize the correlation matrix
RegR <- regcor(simDAT$data)

## Fit 5-factor model to the regularized correlation matrix
fit <- mlFA(RegR$optCor, m = 5)

## Compare lower-bound estimates to communalities with model-implied ones
C <- SMC(RegR$optCor, fit$Loadings)
print(C)

subSet Subset a data matrix or expression set

Description

subSet is a convenience function that subsets a data matrix or an ExpressionSet object.

Usage

subSet(X, Rf)

Arguments

X A data matrix or an ExpressionSet object.

Rf A filtered (correlation) matrix (as returned by the RF function).

Details

The subSet convenience function may directly follow usage of the RF in the sense that the latters
return-value can be used as the Rf argument. It then subsets a data matrix or an ExpressionSet ob-
ject to those features retained by the redundancy-filtering. The function returns a subsetted matrix
or ExpressionSet (depending on the class of the X argument). The subsetted data can then be
used for penalty-parameter selection and regularized correlation matrix estimation provided by the
regcor function.

Value

Returns a subsetted data matrix or ExpressionSet.

Note

If argument X is a matrix, the observations are expected to be in the rows and the features are
expected to be in the columns.
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Author(s)

Carel F.W. Peeters <cf.peeters@vumc.nl>

References

Peeters, C.F.W. et al. (2019). Stable prediction with radiomics data. arXiv:1903.11696 [stat.ML].

See Also

regcor

Examples

## Generate some (high-dimensional) data
## Get correlation matrix
p = 25
n = 10
set.seed(333)
X = matrix(rnorm(n*p), nrow = n, ncol = p)
colnames(X)[1:25] = letters[1:25]
R <- cor(X)

## Redundancy visualization, at threshold value .9
radioHeat(R, diag = FALSE, threshold = TRUE, threshvalue = .9)

## Redundancy-filtering of correlation matrix
Rfilter <- RF(R, t = .9)
dim(Rfilter)

## Subsetting data
DataSubset <- subSet(X, Rfilter)
dim(DataSubset)

https://arxiv.org/abs/1903.11696
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